8
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier, plot_tree
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
X, y = load_breast_cancer(return_X_y=True)
Xt, Xs, yt, ys = train_test_split(X, y, test_size=0.2)
m = DecisionTreeClassifier().fit(Xt, yt)
print("Acc: %.2f%%" % (accuracy_score(ys, m.predict(Xs)) * 100))
print("Class:", ["Malignant", "Benign"][m.predict([Xs[0]])[0]])
plot_tree(m, filled=True); plt.show()
Comments
Post a Comment