10
from sklearn.datasets import load_breast_cancer
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.metrics import confusion_matrix, classification_report
import matplotlib.pyplot as plt
X, y = load_breast_cancer(return_X_y=True)
X = StandardScaler().fit_transform(X)
y_pred = KMeans(n_clusters=2, random_state=42, n_init=10).fit_predict(X)
print(confusion_matrix(y, y_pred))
print(classification_report(y, y_pred))
X_pca = PCA(2).fit_transform(X)
plt.scatter(*X_pca.T, c=y_pred, cmap='coolwarm', alpha=0.7)
plt.title("K-Means Clustering (PCA)")
plt.show()
Comments
Post a Comment