7

 import numpy as np, pandas as pd, seaborn as sns, matplotlib.pyplot as plt

from sklearn.linear_model import LinearRegression

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import PolynomialFeatures

from sklearn.metrics import mean_squared_error, r2_score

from sklearn.datasets import fetch_openml

boston = fetch_openml(name='boston', version=1, as_frame=True)

X, y = boston.data.values, boston.target.values

Xt, Xs, yt, ys = train_test_split(X, y, test_size=0.2)

m = LinearRegression().fit(Xt, yt)

yp = m.predict(Xs)

print("Linear R²=%.2f" % r2_score(ys, yp))

plt.scatter(Xs[:,5], ys, c='b'); plt.scatter(Xs[:,5], yp, c='r'); plt.title("Boston"); plt.show()

df = sns.load_dataset('mpg').dropna()

df['horsepower'] = pd.to_numeric(df['horsepower'], errors='coerce')

df = df.dropna()

X, y = df[['horsepower', 'weight']], df['mpg']

Xt, Xs, yt, ys = train_test_split(X, y, test_size=0.2)

p = PolynomialFeatures(3).fit(Xt)

Xt_, Xs_ = p.transform(Xt), p.transform(Xs)

m = LinearRegression().fit(Xt_, yt)

yp = m.predict(Xs_)

print("Poly R²=%.2f" % r2_score(ys, yp))

plt.scatter(Xs['horsepower'], ys, c='b'); plt.scatter(Xs['horsepower'], yp, c='r'); plt.title("MPG"); plt.show()


Comments

Popular posts from this blog

9

10