10
from sklearn.datasets import load_breast_cancer from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.metrics import confusion_matrix, classification_report import matplotlib.pyplot as plt X, y = load_breast_cancer(return_X_y=True) X = StandardScaler().fit_transform(X) y_pred = KMeans(n_clusters=2, random_state=42, n_init=10).fit_predict(X) print(confusion_matrix(y, y_pred)) print(classification_report(y, y_pred)) X_pca = PCA(2).fit_transform(X) plt.scatter(*X_pca.T, c=y_pred, cmap='coolwarm', alpha=0.7) plt.title("K-Means Clustering (PCA)") plt.show()