3
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
iris = load_iris()
X_scaled = StandardScaler().fit_transform(iris.data)
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_scaled)
plt.figure(figsize=(10, 8))
for target, target_name in zip(range(3), iris.target_names):
plt.scatter(X_pca[iris.target == target, 0], X_pca[iris.target == target, 1], label=target_name, alpha=0.8)
plt.xlabel(f'PC1 ({pca.explained_variance_ratio_[0]:.2%})')
plt.ylabel(f'PC2 ({pca.explained_variance_ratio_[1]:.2%})')
plt.title('PCA of Iris Dataset')
plt.legend()
plt.grid(True, alpha=0.3)
plt.show()
plt.plot(np.cumsum(pca.explained_variance_ratio_), 'bo-')
plt.xlabel('Number of Components')
plt.ylabel('Cumulative Explained Variance')
plt.title('Explained Variance vs. Number of Components')
plt.grid(True, alpha=0.3)
plt.show()
Comments
Post a Comment